BDTB Manual

Ver. 1.0

2011/08/03

Introduction

Copyright

Flow of Decoding

Create Mat File

Decoding

Sample Program

make fmri mat.m

decode basic.m

List of Functions

History

Contact

Introduction

This is the Brain Decoder Toolbox (BDTB) manual.
BDTB performs “decoding” of brain activity, by learning the difference between brain
activity patterns among conditions and then classifying the brain activity based on the

learning results.

BDTBis a set of Matlab functions.
BDTBis OS-independent.
BDTB was tested on Matlab R2010a, using Windows 7 Professional.

Some functions of BDTBrely on functions of “SPM5”.
BDTB can use “LIBLINEAR”, “LIBSVM”, “OSU-SVM”, and “SLR” as classifiers.

You can obtain them from the following sources.

+ SPM5

http://www.fil.ion.ucl.ac.uk/spm/software/spm5b/

- LIBLINEAR

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

- LIBSVM

http://www.csie.ntu.edu.tw/~cjlin/libsvim

- OSU-SVM

http://svm.sourceforge.net/download.shtml

- SLR
http://www.cns.atr.jp/~oyamashi/SLR WEB.html

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://svm.sourceforge.net/download.shtml
http://www.cns.atr.jp/~oyamashi/SLR_WEB.html

Copyright

BDTBis free but copyright software, distributed under the terms of the GNU General
Public License as published by the Free Software Foundation.
Further details of “copyleft” can be found at http:/www.gnu.org/copyleft/ .

No formal support or maintenance is provided or implied.

http://www.gnu.org/copyleft/

Flow of Decoding

BDTB decodes brain activities in the following flow.

1. Create Mat File

a. Load experimental design

b. Load brain activity information

¢. Save the data into a mat file

2. Decoding
a. Run preprocessing for the data

b. Learn statistical models

c. Classify the data by using learned models

Create Mat File

A mat file containing the brain activity information and the experimental design is

created in this step.

The brain activities and the experimental design should be written in a BDTB-specific

structure.

The format of the BDTB-specific structure D is shown below.

Structure D (Data)

field name description format
. L . Real-numbered matrix,
data Brain activity information .
[time (sample) x space(channel / voxel)]
label Conditions, such as kinds of Real-numbered matrix,
abe
stimuli or movements [time x # of label-type]
label_type Types of conditions Cell string matrix, [1 x # of label-typel
. Cell string hierarchy,
label_def Name of each condition .
[1 x # of label-typel[1 x # of conditions]
) Experimental design - numbers | Whole-numbered matrix,
design

of runs, sessions, or blocks

[time x # of design-typel

design_type

Types of experimental design

Cell string matrix,

[1 x # of design-type]

Real-numbered matrix,

stat Statistics of samples
[# of stats-type x space]
tat t Ty £ atatisti Cell string matrix,
stat_type pes of statistics
[1 x # of stats-typel
Coordinate value of each Real-numbered matrix,
XyZ
channel / voxel [3(x,y,2) x spacel
] Channel- / voxel-assignment of)
roi Boolean matrix, [# of ROI x spacel
each ROI
roi_name Name of each ROI Cell string matrix, [1 x # of ROI]

Decoding

The structure D in the pre-made mat file is read, and data is divided between training
data and test data.
Training data is used for learning of the statistical models.

Test data is used for classification by the learned models.

BDTBhas some useful functions like cross-validation and filters.

In order to use them, the brain activity information and the experimental design should

be contained in the structure D (see Create Mat File), and the parameters of functions

should be in the structure P.

The format of structure P is outlined below.

field name description format

<function name> . <parameter name> | Parameter value | Structure named by

function name

(examples)
selectChanByTvals. num_chans 200
selectChanByTvals. tvals_min 3.2
reduceOutliers. std_thres 4

2% Please refer to List of Functions and help of each function for information about

parameters.

Sample Program

You can download sample programs and data from the following web site

(http://www.cns.atr.jp/dni/download/brain-decoder-toolbox/).

The sample programs run Create Mat File and Decoding according to Flow of Decoding.

The sample data was obtained from the following experiment.

Subject : a man
Setting of MRI : 1.5 T MRI(Shimadzu-Marconi), FOV 192 mm, 64 x 64 matrix, 3
x 3 x 3 mm, 50 slices, TE 50 ms, FA 90 deg, TR 5 s

Subject was instructed to continue making the gesture of rock-paper-scissors
(RPS) in the MRI according to the visual and temporal cues.

The visual cues indicated which hand gesture should be made.

The temporal cues (beeping sounds) were given in 1 sec intervals to inform the
subject about the timing of the repetition.

Each run had a 20 sec rest period at the beginning and at the end to relax the
subject.

Between the rest periods, the subject repeated making the requested gesture

that was changed in 20 sec intervals as below.

Run 1 rest S R P R P S rest
Run 2 rest S P R R S P rest
Run 3 rest R S P R P S rest
Run 4 rest P R S R § P rest
Ruinb5: rest S P R R S P rest
Run6 : rest P S R P R S rest
Run7: rest P R S R P S rest
Run 8 rest S P R S R P rest
Run 9 rest S R P R P S rest
Run10 rest R S P S P R rest

http://www.cns.atr.jp/dni/download/brain-decoder-toolbox/

make fmri mat.m

This function reads the brain activity information and the experimental design, puts
them into the structure D, and creates a mat file.

For information about the format of structure D, please refer to Create Mat File.

Following is a description about each parameter.

P.sbj_id = ‘SS§100511°
ID of subject, specified by his/her initials in capital letters and the date of the
experiment (YYMMDD format)

P.paths. to_lib ¢
P. paths. to_dat ¢
Paths to root directory of BDTB and data

If empty, you can specify them while this function is running.

P.fMRI.LTR =5
TR of MRI

P. fMRI. begin_vols =3
Number of the first file in each run
When the number is different in each run, this value is a vector, [1 x # of runs].

(In this sample, this value is 3 because the first 2 samples in all runs have been
deleted.)

P. fMRI. run_names ={a b, ¢ ,d ., e ;cf g, h i, jl

Letters that indicate the run number (3¢ 1)

P. fMRI. base_file_name =[‘r P.sbj_id]
Base name of fMRI files (3¢ 1)

P.prtcl. labels_runs_blocks = ... (1:rest, 2:Rock, 3:Scissors, 4:paper)
Condition / label (whole number) of each block, separated in a cell matrix per run,

and per label type (3¢ 2)

P.prtcl. labels_type = { ‘rock-paper-scissors’ }
Type of condition / label

P.prtcl. labels_def = { ‘rest’ ,

Name of each condition / label, separated in a cell matrix per label type

’ ’ H ’ ’ ’
rock’ ,’ scissors’ ,’ paper’ }

P.prtcl. samples_per_label = {4}

Number of samples for each label specified in ‘labels_runs_blocks’, separated in a
cell matrix per label type

When the number is the same in all runs and all labels, this value is a scalar;
when the number is different in each label but the same in all runs, this value is a
vector [1 x # of labels]; when the number is different in each label and each run,
this value is a cell matrix [1 x # of run][1 x # of labels]. (3% 2)

.prtcl. samples_per_block =4
Number of samples for each block
When the labels and the blocks are the same, this value is the same as

‘samples_per_label .

.rois. spm_ver =5
Version of SPM that is used for ROI creation, because axis definition is dependent

on the version of SPM

.rois.roi_set = ‘roi’
Name of ROI set
.rois.roi_dir = ‘roi/’

Name of directory that has ROI files

.rois.roi_files = { ‘M1_RHand’ ,” SMA_RHand’ ,’” CB_RHand’ ,...}
Names of ROI files (don’t need ‘.mat’)

When ROI isn’t used (all voxels are used), specify an empty cell matrix.

. stats. stat_dir = ‘roi/

Name of directory that has files containing statistics

10

P.stats. stat_files = {{ ‘VOX_CB_RHand.mat’ ,” VOX_M1_RHand.mat’ ,...}}
Names of files containing statistics
When you want to summarize statistics in multiple files, group the file names in

the same cell.

P. stats. stat_type = { ‘tval’ }

Name of statistics type

P. output. verbose =0

Print detail level, O (no printing) ~ 2 (output all)

P. output. save_ver =7

Format of mat file that will be created

P. output. file_name = [P.sbj_id ‘_ fmri_’ P.rois.roi_set ‘v -]

Name of mat file that will be created

%1 In this sample, the name of the fMRI file is
[prefix][subject ID][run letter][file number in 4 figures] .hdr/ .img
So, [run letter (a, b, ...)] is used for ‘run_names’, and [prefix][subject ID] is used for

‘base_file_name’.

% 2 D.label, the labels corresponding to samples, is made by a combination of

‘labels_runs_blocks’ and ‘samples_per_label’.

When ‘samples_per_label’is a scalar:
D.label is made by repeating each label of ‘labels_runs_blocks’
‘samples_per_label’ number of times.

When ‘samples_per_label’is a vector:
D.label is made by repeating the i-th label in each run of ‘labels_runs_blocks’
‘samples_per_label(i)’ number of times.

When ‘samples_per_label’is a cell matrix:
D.labels is made by repeating the i-th label in the j-th run of

‘labels_runs_blocks’ ‘samples_per_label{j}(i)’ number of times.

11

decode basic.m

This function reads the structure D (see Create Mat File), applies filters to the data, and

calculates the decoding accuracy by using cross-validation.

Following is a description of each parameter.

P. script_name = mfilename
P. date_time = datestr (now,” yyyy-mm-dd HH:MM:SS’)

Name of this function and time at when this function is run

P.paths. to_lib ¢
P. paths. to_dat ¢
Paths to root directory of BDTB and data

If empty, you can specify them while this function is running.

P.procst = {...}
Names of functions that will be applied to data before cross-validation (3% 3)

Functions are applied in the specified order.

P.procs2 = { ..}
Names of functions that will be applied to data in cross-validation (3¢ 3)

Functions are applied in the specified order.

P. <function name>. <parameter name>
Parameters of filters (3% 4)

P.models = { ‘libsvm_bdtb’ }
Names of models

When multiple models are specified, they are used in parallel.

P. <mode| name>. <parameter name> = ..

Parameters of models (3% 4)

12

%3

x4

The filters specified in ‘procs1’ are applied to data before cross-validation.

This means that they are applied to the data that hasn’t yet been divided between
training data and test data.

So you should notice that the information you can’t obtain from training data only
shouldn’t be used. (Double dipping)

The filters specified in ‘procs2’ are applied to training data and test data
individually in cross-validation.

The parameters calculated in the training session can be used in the testing

session.

Please refer to List of Functions and help of each function and model for

information about parameters.

13

List of Functions

This is the list of functions BDTB contains.

Filters

averageBlocks

averagelabels
balanceLabels

convertLabel
detrend_bdtb

highPassFilter
normByBaseline

poolSample
reduceQutliers

removeBlockSample

selectBlockSample
selectChanByTvals

selectConds
selectLabelType

selectTopFvals
shiftData

zNorm bdtb

Models

liblinear bdtb
libsvm bdtb
slr lap bdtb
slr_ var bdtb
smlr_bdtb
svm11lin bdtb

Evaluation

crossValidate

validate

Average data in each block

Average data in each label

Balance number of samples among labels
Converting labels

Detrend on data along time dimension
High-pass filter

Normalize data by its baseline
Average data in each label

Reduce outlier values of data

Remove samples in each block

Select samples in each block

Select channels based on t-value
Select samples corresponding to labels
Select label type from multiple labels
Select data based on F-value

Shift data along time dimension

Normalize data by z-score

Perform LIBLINEAR
Perform LIBSVM
Perform SLR-LAP-1vsR
Perform SLR-VAR-1vsR
Perform Multinomial SLR
Perform OSU-SVM

Perform leave-one-out cross-validation

Perform validation

14

averageBlocks Average data in each block
[D, pars] = averageBlocks(D, pars)

Average data in each block

Input :
D.data — brain activity information
D.label — condition of each sample
D.design — design matrix of experiment (to get block information)
D.design_type — name of each design type (to find ‘block’)
Optional :
pars.begin_off — number of samples to remove from the beginning of each
block (default: 0)
pars.end_off — number of samples to remove from the end of each block
(default: 0)
pars.target_labels — labels for which data samples are averaged
(default: all labels)
pars.verbose — print detail level (default: 1)
Output :
D.data — block averaged data
D.label — labels for averaged data
D.design — design matrix of averaged data

15

averageLabels Average data in each label
[D, pars] = averageLabels(D, pars)

Average data in each continuous label

Input :
D.data
D.label

Optional :
pars.begin_off

pars.end_off

pars.target_labels

pars.verbose
Output :

D.data

D.label
D.design

brain activity information

condition of each sample

number of samples to remove from the beginning of each
block (default: 0)
number of samples to remove from the end of each block
(default: 0)
labels for which data samples are averaged
(default: all labels)
print detail level (default: 1)

averaged data
labels for averaged data

design matrix of averaged data

16

balanceLabels Balance number of samples among labels
[D, pars] = balanceLabels(D, pars)

Equalize the number of samples among labels

Input :
D.data
D.label

Optional :

pars.method

pars.doTest

pars.mode

pars.verbose

Output :
D.data
D.label

brain activity information

condition of each sample

equalizing-method

1: averaging, 2: adjust to min (default), 3: adjust to max
should we balance in testing?

0: no, 1: yes (default)

1: training, 2: testing
print detail level (default: 0)

data matching the new labels

new balanced labels

17

convertlLabel Converting labels
[D, pars] = convertLabel(D, pars)

Converting labels according to the given table

Input :

D.label — condition of each sample

pars.list — conversion table of labels, {lorgl, newl1], [org2, new?2], ...} format
Output :

D.label — converted labels

18

detrend bdtb Detrend on data along time dimension
[D, pars] = detrend_bdtb(D, pars)

Detrend on data along the time dimension

Input :
D.data — brain activity information
Optional :
D.design — design matrix of experiment (to get run information)
D.design_type — name of each design type (to find ‘run’)
pars.sub_mean — subtract the mean?
0: no (default), 1: yes
pars.method — detrend-method
linear: subtract linear fit (default)
constant: subtract just the mean
pars.breaks — break points for piecewise detrend
[beginl, begin2, ...; end1, end2, ...] format
pars.break_run — use runs as breaks? 0: no, 1: yes (default)
pars.verbose — print detail level (default: 1)
Output :
D.data — detrended data

2% This filter is applied to data along the time dimension, so the data should be
continuous along the time dimension.
If there are gaps in time like the time between runs, you should specify them in

pars.breaks, or use run information obtained from D.design.

19

highPassFilter High-pass filter
[D, pars] = highPassFilter(D, P)

Apply high-pass filter to data

Input :
D.data — brain activity information
Optional :
D.design — design matrix of experiment (to get run information)
D.design_type — name of each design type (to find ‘run’)
pars.dt — sampling interval [sec] (default: 2)
pars.cutoff — cut-off frequency [sec] (default: 128)
or list of cut-off frequency (e.g. [128, 128, ...])
pars.app_dim — dimension along which this process will be applied
1: across time (default), 2: across space
pars.linear_detrend — perform ‘detrend’ before high-pass filtering?
0: no, 1: yes (default)
pars.breaks — break points for piecewise filtering
[beginl, begin2, ...; end1, end2, ...] format
pars.break_run — use runs as breaks? 0: no, 1: yes (default)
pars.verbose — print detail level (default: 1)
Output :
D.data — high-pass filtered data

2 This filter is applied to data along the time dimension, so the data should be
continuous along the time dimension.
If there are gaps in time like the time between runs, you should specify them in

pars.breaks, or use run information obtained from D.design.

20

normByBaseline Normalize data by its baseline
[D, pars] = normByBaseline(D, pars)

Calculate the baseline of data along the time dimension, and normalize the data by it

Input :
D.data — brain activity information
D.label — condition of each sample
Optional :
D.design — design matrix of experiment (get run information)
D.design_type — name of each design type (find ‘run’)
pars.base_conds — label that is used for calculation of the baseline (default :1)
pars.zero_thres — threshold below which the baseline is considered zero
pars.breaks — break points for piecewise normalization
[beginl, begin2, ...; end1, end2, ...] format
pars.break_run — use runs as breaks? 0: no, 1: yes (default)
pars.verbose — print detail level (default: 1)
pars.mode — baseline normalization mode
0: subtraction of and division by the mean
(i.e. % signal change, default)
1: only division by the mean
2: only subtraction of the mean
3: subtraction of the mean and division by the std
(i.e. z-score)
Output :
D.data — normalized data

2 This filter is applied to data along the time dimension, so the data should be
continuous along the time dimension.
If there are gaps in time like the time between runs, you should specify them in

pars.breaks, or use run information obtained from D.design.

21

poolSample Average data in each label
[D, pars] = poolSample(D, pars)

Pool and average data with same labels

This filter can average data in other blocks depending on parameters.

Input :
D.data — Dbrain activity information
D.label — condition of each sample
D.design — design matrix of experiment
(to get run and block information)
D.design_type — name of each design type (to find ‘run’ and ‘block’)
pars.nPool — number of pooling samples
pars.poolLabel — target labels to pool
Optional :
pars.poolSep — pool samples in other blocks? 0: no, 1: yes (default)
pars.useResid — wuse residual samples?
0: delete
1: add last block (default)
2: make one more block
Output :
D.data — averaged data
D.label — labels for averaged data
D.design — design matrix of averaged data

2% This filter permutes labels and samples.
(In each run, nontarget labels get moved to the front, and target labels are all moved
to the back of the data set.)

So, please notice when this filter is applied to data.

22

reduceQutliers Reduce outlier values of data
[D, pars] = reduceOutliers(D, pars)

Reduce outlier values of data along the time / space dimension

Input :
D.data — brain activity information
Optional :
D.design — design matrix of experiment (to get run information)
D.design_type — name of each design type (to find ‘run’)
pars.app_dim — dimension along which reduction will be applied
1: across time (default), 2: across space
pars.remove — remove channels including outliers?
0: clip outliers, 1: remove instead of clip outliers
pars.method — method to find outliers
1: max std deviation only
2 constant ‘min_val’, ‘max_val only
3: both (default)
pars.std_thress — number times std for threshold cut off and clip (default: 3)
pars.num_its — number of iteration (default: 10)
pars.max_val — absolute max value (default: inf)
pars.min_val — absolute min value (default: -inf)
pars.breaks — break points for piecewise normalization
[beginl, begin2, ...; end1, end2, ...] format
pars.break_run — use runs as breaks? 0: no, 1: yes (default)
pars.verbose — print detail level (default: 1)
Output :
D.data — data reduced outlier values
D.xyz — X, Y, Z-coordinate values within the selected channels
D.stat — statistics within the selected channels
D.roi — ROI information within the selected channels

23

2% This filter is applied to data along the time dimension, so the data should be
continuous along the time dimension.
If there are gaps in time like the time between runs, you should specify them in

pars.breaks, or use run information obtained from D.design.

* D.xyz, D.stat, and D.roi will be updated according to the selected channels when you

set the parameter to remove channels including outliers.

24

removeBlockSample Remove samples in each block
[D, pars] = removeBlockSample(D, pars)

Remove the specified number of samples in each block

Input :
D.data
D.label
D.design
D.design_type
pars.begin_off

pars.end_off

Optional :

pars.target_labels

pars.verbose

Output :

D.data

D.label
D.design

brain activity information

condition of each sample

design matrix of experiment (to get block information)

name of each design type (to find ‘block’)

start index offset of samples to be removed from the
beginning of each block (default: 0)

end index offset of samples to be removed from the end of
each block (default: 0)

labels for which data samples are removed
(default: all labels)
print detail level (default: 1)

removed data
labels for removed data

design matrix of removed data

25

selectBlockSample Select samples in each block
[D, pars] = selectBlockSample(D, pars)

Select the specified number of samples in each block

Input :
D.data
D.label
D.desing
D.design_type

pars.inds

Optional :

pars.target_labels

pars.verbose

Output :
D.data
D.label
D.design

brain activity information

condition of each sample

design matrix of experiment (to get block information)
name of each design type (to find ‘block’)

indices of samples to be selected for each block

labels for which data samples are selected
(default: all labels)
print detail level (default: 1)

selected data
labels for selected data

design matrix of selected data

26

selectChanByTvals Select channels based on t-value
[D, pars] = selectChanByTvals(D, pars)

Select the specified number / ratio of channels whose t-values are within the specified

region of t-values

Input :
D.data — Dbrain activity information
D.stat — statistics of each sample (to get t-value)
D.stat_type — name of each statistics type (to find ‘tval)
Optional :
pars.num_chans — number of channels to select (whole number),
or percent of existing ones (decimal, less than 1)
(default: all channels)
pars.tvals_min — min value of t-values range to use (default: -inf)
pars.tvals_max — max value of t-values range to use (default: inf)
pars.verbose — print detail level (default: 1)
Output :
D.data — data within the selected channel
D.xyz — X, Y, Z-coordinate values within the selected channel
D.stat — statistics within the selected channel
D.roi — ROI information of selected channel

27

selectConds Select data corresponding to labels
[D, pars] = selectConds(D, pars)

Select samples corresponding to labels that match the specified ones

Input :
D.data — brain activity information
D.label — condition of each sample
pars.conds — conditions to be selected from labels
Optional :
pars.verbose — print detail level (default: 1)
Output :
D.data — data corresponding to matched labels
D.label — condition labels matching ‘conds’

28

selectLabel Type Select label type from multiple labels

[D, pars] = selectLabelType(D, pars)

Select a label type that is used for analysis from multiple labels

Input :

D.label — condition of each sample

pars.target — target label type index to be selected
Output :

D.label — labels of the selected label type

D.label_type — selected label type

D.label_def — mname of each condition in selected label type

2% The structure D can contain multiple label types.

But you should select only one label type to be used for analysis.

29

selectTopFvals Select data based on F-value
[D, pars] = selectTopFvals(D, pars)

Calculate F-values, and select the specified number / ratio of channels / samples whose

F-values are within the specified region of F-values

Input :
D.data — Dbrain activity information
D.label — condition of each sample
Optional :
pars.inds_fvals — indices of data ordered by F-values
(made in training, used in testing)
pars.fvals — F-values matching ‘inds_fvals’ (descending)
pars.mode — 1: training (make ‘inds_fvals’), 2: testing (use ‘inds_fvals’)
pars.app_dim — application dimension
1: across time, 2: across space (default)
pars.num_comp — number of F-values to select (whole number)
or percent of existing ones (decimal, less than 1)
(default: all)
pars.fvals_min — min value of F-values range to use (default: -inf)
pars.fvals_max — max value of F-values range to use (default: inf)
pars.verbose — print detail level (default: 1)
Output :
D.data — selected data

2% This filter should be applied to data after division between training data and test
data, as the selected data is defined based on the F-values that are calculated only
from training data.

If not, the information obtained from the test data is included in F-values. (Double

dipping)

30

shiftData Shift data along time dimension
[D, pars] = shiftData(D, pars)

Shift data along the time dimension in each run

This filter changes the relation between data and labels.

Input :
D.data — Dbrain activity information
D.design — design matrix of experiment
(to get run and block information)
D.design_type — name of each design type (to find ‘run’ and ‘block’)
pars.shift — number of time samples to shift data
Optional :
pars.verbose — print detail level (default: 1)
Output :
D.data — shifted data
D.label — labels for shifted data
D.design — design matrix of shifted data

% In case of fMRI, the hemodynamic delay must be considered, so the data should be
shifted.

2 This filter is applied to data along the time dimension, so the data should be
continuous along the time dimension.

The information about gaps in time is obtained from D.design.

31

zNorm_bdtb Normalize data by z-score
[D, pars] = zNorm_bdtb(D, pars)

Normalize data by z-score along the time / space dimension

Input :
D.data

Optional :
pars.mode

pars.smode

pars.app_dim

pars.sub_mean
pars.verbose
pars.mu

pars.sd

Output :
D.data

brain activity information

1: training (make mean, std), 2: testing (use mean, std)
over-riding static mode?

0: no (default), 1: yes (always calculate mean, std)
dimension to normalize along

1: time, 2 space (default)
subtract mean? 1:yes (default), 2: no
print detail level (default: 0)
mean (calculated in training, used in testing)

standard deviation (calculated in training, used in testing)

normalized data

32

liblinear_bdtb Perform LIBLINEAR
[result, pars] = liblinear_bdtb(D, pars)

Use “LIBLINEAR” as the statistical model

Input :

D.data — brain activity information

D.label — condition of each sample
Optional :

pars.model — training result (made in training, used in testing)

pars.mode — 1: training, 2: testing

pars.verbose — print detail level (default: 0)

pars.ops — parameters for “LIBLINEAR”

Please refer to README of “LIBLINEAR”

Output :

result.model — ‘liblinear_bdtb’

result.pred — predicted labels

result.label — defined labels

result.weight — weight and bias

33

libsvim_bdtb

Perform LIBSVM

[result, pars] = libsvm_bdtb(D, pars)

Use “LIBSVM?” as the statistical model

Input :
D.data
D.label

Optional :
pars.model
pars.mode

pars.verbose

LIBSVM pars :
pars.kernel
pars.cost
pars.gamma
pars.coef
pars.degree

pars.prob

Output :
result.model
result.pred
result.label
result.dec_val

result.weight

brain activity information

condition of each sample

training result (made in training, used in testing)
1: training, 2: testing
print detail level (default: 0)

parameters for “LIBSVM”
Please refer to README of “LIBSVM”

‘libsbm_bdtb’
predicted labels
defined labels
decision values

weight and bias

34

slr_lap_bdtb Perform SLR-LAP-1vsR
[result, pars] = slr_lap_bdtb(D, pars)

Use “SLR-LAP(sparse logistic regression with Laplace approximation)-1vsR” as the

statistical model

Input :
D.data — Dbrain activity information
D.label — condition of each sample
Optional :
pars.conds — conditions to be tested
pars.mode — 1: training, 2: testing
pars.verbose — print detail level (default: 0)
SLR pars : — parameters for “SLR”

pars.scale_mode Please refer to README of “SLR”
pars.mean_mode
SLR pars for test :
pars.weight
pars.ix_eff
pars.norm_scale
pars.norm_base
pars.norm_sep
SLR pars for train :
pars.nlearn

pars.ax0

pars.amax

Output :

result.model — ‘slr_lap_bdtb’

result.pred
result.label
result.dec_val

result.weight

predicted labels
defined labels
decision values

weight and bias

35

slr var bdtb Perform SLR-VAR-1vsR

[result, pars] = slr_var_bdtb(D, pars)

Use “SLR-VAR(sparse logistic regression with variational approximation)-1vsR” as the

statistical model

Input :
D.data — brain activity information
D.label — condition of each sample
Optional :
pars.conds — conditions to be tested
pars.mode — 1: training, 2: testing
pars.verbose — print detail level (default: 0)
SLR pars : — parameters for “SLR”
pars.scale_mode Please refer to README of “SLR”
pars.mean_mode
SLR pars for test :
pars.weight
pars.ix_eff

pars.norm_scale
pars.norm_base

pars.norm_sep

SLR pars for train :
pars.nlearn
pars.ax0
pars.amax

Output :
result.model — ‘slr_var_bdtb’
result.pred — predicted labels
result.label — defined labels
result.dec_val — decision values
result.weight — weight and bias

36

smlr bdtb

Perform Multinomial SLR

[result, pars] = smlr_bdtb(D, pars)

Use “Multinomial SLR” as the statistical model

Input :
D.data
D.label

Optional :
pars.conds
pars.mode

pars.verbose

SLR pars :
pars.scale_mode
pars.mean_mode

SLR pars for test :
pars.weight
pars.ix_eff
pars.norm_scale
pars.norm_base
pars.norm_sep

SLR pars for train :
pars.nlearn
pars.ax0

pars.amax

Output :
result.model
result.pred
result.label
result.dec_val

result.weight

brain activity information

condition of each sample

conditions to be tested
1: training, 2: testing
print detail level (default: 0)

parameters for “SLR”
Please refer to README of “SLR”

‘smlr bdtb’
predicted labels
defined labels
decision values

weight and bias

37

svmlllin bdtb

Perform OSU-SVM

[result, pars] = svm11lin_bdtb(D, pars)

Use “OSU-SVM” as the statistical model

Input :
D.data
D.label

Optional
pars.weight
pars.mode

pars.num_boot

pars.verbose

Output :
result.model
result.pred
result.label
result.dec_val

result.weight

brain activity information

condition of each sample

weight (calculated in training, used in testing)
1: training, 2: testing
number of bootstrap samples

0: no bootstrapping

>0: number of samples

<0: use “num_boot x length(labels)’

print detail level (default: 0)

‘svm11lin_bdtb’
predicted labels
defined labels

decision values

weight and bias

2¢ This model can be used on 32-bit only, because the distributed mex file is for 32-bit

only.

38

crossValidate Perform leave-one-out cross-validation
[result, P] = crossValidate(D, P, procs, models)

Perform leave-one-out cross-validation

Input :
D.data
D.label
D.design

procs

models

Optional :
P.<function>

P.crossValidate.fold_ind

P.crossValidate.res_train

P.crossValidate.verbose

Output :
result{}.model
result{}.pred
result{}.label
result{}.dec_val
result{}.weight
resulti}.freq_table

resulti}.correct_per

brain activity information
condition of each sample
design matrix of experiment
(to get the basis of grouping)
names of the processing functions to be called

names of the model functions to be called

parameters of ‘procs’ and ‘models’

index of D.design means which design is used as
the basis of grouping(fold) (default: 1)

return training result also? 0: no (default), 1: yes

print detail level (default: 1)

names of used models
predicted labels
defined labels
decision values
weights and bias
frequency table

percent correct

2 The data is divided into some groups based on the experimental design specified by

‘fold_ind’.

When the design of run is specified, leave-‘one run’-out cross-validation is performed,

and when the design of block is specified, leave-‘one block’-out cross-validation is

performed.

39

validate Perform validation
[result, P] = validate(D_tr, D_te, P, procs, models)

Validate test data by the statistical models trained using training data

Input :
D_tr.data — brain activity information for training
D_tr.label — conditions of each sample for training
D_te.data — brain activity information for testing
D_te.label — conditions of each sample for testing
procs — mnames of the processing functions to be called
models — names of the model functions to be called
Optional :
P.<function> — parameters of ‘procs’ and ‘models’
P.validate.res_train — return training result also? 0: no (default), 1: yes
P.validate.verbose — print detail level (default: 1)
Output :
result{}.model — names of used models
result{}.pred — predicted labels
result{}.label — defined labels
result{}.dec_val — decision values
result{}.weight — weights and bias
result{}.freq_table — frequency table
result{}.correct_per — percent correct

40

History

Ver. 1.0

2011/08/03

41

Contact

Satoshi Murata
Research Engineer in ATR Intl. Computational Neuroscience Labs

satoshi-m@atr.jp

42

mailto:satoshi-m@atr.jp?subject=About%20How%20to%20make%20ROI
mailto:satoshi-m@atr.jp?subject=About%20How%20to%20make%20ROI

	はじめに
	著作権
	処理の流れ
	Matファイル作成
	デコーディング
	サンプルプログラム
	make_fmri_mat
	※１
	※２
	decode_basic
	※３
	※４
	関数一覧
	averageBlocks
	averageLabels
	balanceLabels
	convertLabel
	detrend_bdtb
	highPassFilter
	normByBaseline
	poolSample
	OLE_LINK1
	OLE_LINK2
	reduceOutliers
	removeBlockSample
	selectBlockSample
	selectChanByTvals
	selectConds
	selectLabelType
	selectTopFvals
	shiftData
	zNorm_bdtb
	liblinear
	libsvm
	slr_lap
	slr_var
	smlr
	svm11lin
	crossValidate
	validate
	更新履歴
	連絡先

